■正誤表

「ポケット版 要点整理 電験三種 4 科目」(ISBN 978-4-274-50586-7)

●平成29年2月10日第1版第1刷

頁·該当箇所	誤	正
p.8 下から 8~9 行目	コイル、 <u>リアクタンス</u> 電流を流すと磁気が発 生する要素を <u>リアクタンス</u> といい, …	コイル、 <u>インダクタンス</u> 電流を流すと磁気が 発生する要素を <u>インダクタンス</u> といい, …
p.57 上から5行目	\cdots となり, I_{a} は I_{ab} より $\pi/6$ 遅れる.また,	\cdots となり, I_a は $I_{\underline{ba}}$ より $\pi/6$ 遅れる.また,
p.57 確認 1 左図	\dot{V}_{a} \dot{V}_{c} \dot{V}_{bo} \dot{V}_{bo}	\dot{V}_{a} \dot{V}_{bo} \dot{V}_{bo} \dot{V}_{bo}
p.58 上から2行目	ab 間の相電流は、 $I_{\underline{p}} = \frac{1}{\sqrt{3}}I_{a}$	ab 間の相電流は、 $I_{\underline{ab}} = \frac{1}{\sqrt{3}} I_{\underline{a}}$
p.73 左図中の電 圧の関係式	$\underline{I}_{\mathrm{M}} = V_{\mathrm{T}}$	$\underline{V}_{\mathrm{M}} = V_{\mathrm{T}}$
p.73 表の 5 行目	適性 R が大きいとき R が小さいとき	適性 Rが小さいとき Rが大きいとき
p.84 下図	p 空乏層 n	型之層 n 正孔 ○ → 電子 電界

●平成29年8月1日第1版第2刷

頁·該当箇所	月1日第1版第2刷 誤	正
p.30 上から 13 行 目	各コンデンサの <u>電圧</u> が同じ理由	各コンデンサの <u>電荷</u> が同じ理由
p.38 上から 4~6 行目	円筒状に巻いたコイル(ソレノイド) <u>半径 r[m]</u> で円筒状に N回巻いたコイルに電流 I[A] を流したとき、コイル中心の磁界の強さは、	円筒状に巻いたコイル(ソレノイド) 長さ $I[m]$, 巻数 N の十分に長いソレノイドに電流 $I[A]$ を流したとき,ソレノイド内部の磁界の強さは, $H = \frac{NI}{l} = nI[A/m]$ ここで, $n = N/I[/m]$ は $1m$ あたりの巻数である.
p.38 上図	図中の r 及	び ゆ は不要
F.38 下から3行目	確認 1 磁気抵抗は鉄心の長さに <u>反比例</u> し,断面 積に <u>比例</u> する.	確認 1 磁気抵抗は鉄心の長さに <u>比例</u> し,断面積 に、 <u>反比例</u> する.
p.49 上から 7~8 行目	確認3 <i>RL 並列</i> 回路の…, <i>RC 並列</i> 回路の…	確認 3 <i>RL</i> <u>直列</u> 回路の…, <i>RC</i> <u>直列</u> 回路の…
p.70 下図	可動コイル 固定コイル <i>i</i> 国定コイル <i>j</i> 電源	可動コイル 固定コイル j を で を で が で が で が で が で が で が で が で が で が で が で が で が で が で が で が で が で が が が が が が が が が が が が が
上から 14 行 目	$E_{\rm x} = \cdots = 1.8 \ [\underline{\Omega}]$	$E_{\rm x} = \cdots = 1.8 \ [\underline{\rm V}]$

p.83 上から 17~ 18 行目	4 価の半導体 (<u>ヒ素, リン, アンチモン</u> など) に 5 <mark>価の半導体 (ケイ素 (シリコン), ゲルマニウム</mark> など) を不純物として加えてつくる.	4 価の半導体 (<u>ケイ素 (シリコン)</u> , ゲルマニウム など) に 5 価の半導体 (<u>ヒ素</u> , リン, アンチモン など) を不純物として加えてつくる.
p.91 確認 図中の電圧	V+ V-	V- V+
p.91 下から 2~3 行目	…によらず、 $V_{\rm o}=-rac{R_{ m l}}{R_{ m 2}}V_{ m i}$ が成り立ち、電圧増	…によらず、 $V_{ m o}=-rac{R_{ m 2}}{R_{ m l}}V_{ m i}$ が成り立ち、電圧増
1111	幅度 $A_{\rm V} = \frac{\left \frac{V_{\rm i}}{V_{\rm o}} \right }{\left \frac{R_{\rm I}}{R_{\rm 2}} \right } = \frac{R_{\rm I}}{R_{\rm 2}}$ となる. なお, …	幅度 $A_{\rm V} = \frac{\left \frac{V_{\rm o}}{V_{\rm i}} \right }{\left \frac{R_{\rm o}}{V_{\rm i}} \right } = \frac{R_{\rm o}}{R_{\rm o}}$ となる. なお, …
p.100 上から5行目	185.5 [<u>kW・h</u>] で運転している	185.5 [<u>kW</u>] で運転している
p.100 上から8行目	…出力 P_{G} = 1 000 [$\underline{\mathrm{kW}}\cdot\mathrm{h}$] で運転しており,	…出力 $P_{ m G}$ = 1000 [${ m \underline{kW}}$] で運転しており、
p.102 下から 2~5 行目	蒸気消費率 $Q = \frac{Z(i_{s} - i_{c})}{P_{G}} [kJ/(kW \cdot h)]$	タービン熱消費率 $Q = rac{Z(i_{ m s} - i_{ m e})}{P_{ m G}}ig[{ m kJ/(kW \cdot h)}ig]$
	$1 \mathrm{kW} \cdot \mathrm{h}$ の発電に要する蒸気の熱量で、発電量から蒸気使用量をみるときに役立つ、ここで、…、 $i_{\mathrm{s}} [\mathrm{kJ} \cdot \mathrm{kg}] $	$1 \mathrm{kW} \cdot \mathrm{h}$ の発電に要するタービンの熱消費量である。ここで、…、 i_s $[\mathrm{kJ} \cdot \mathrm{kg}]$ と i_e $[\mathrm{kJ} \cdot \mathrm{kg}]$ は…
p.104 上図中の機 器名	燃 <u>料</u> 器	燃 <u>焼</u> 器
p.121 上から 15 行 目	$=32$ [μ F]	= <u>3.2</u> [µF]
p.121 下から8行目	抵抗接地: $I_{\rm g} \frac{E}{R_{\rm g} + \frac{1}{R_{\rm N}} + j3\omega C} \stackrel{\leftrightharpoons}{=} \cdots$	抵抗接地: $I_{\rm g} \frac{E}{R_{\rm g} + \frac{1}{\dfrac{1}{R_{\rm N}} + j3\omega C}} \stackrel{\leftrightharpoons}{=} \cdots$
p.132 下から 1、3 ~5 行目	単相負荷の電流 $\underline{I}_{\mathrm{S}} = \cdots$ 三相負荷の電流 $\underline{I}_{\mathrm{T}} = \cdots$ 共用変圧器の容量 $S_{\mathrm{C}} = (I_{\underline{\mathrm{S}}} + I_{\underline{\mathrm{T}}})V = \cdots$ $= 50 \ [\mathrm{kV} \cdot \mathrm{A}]$ 専用変圧器の容量 $S_{\mathrm{D}} = I_{\underline{\mathrm{S}}} \times V = \cdots$	三相負荷の電流 $I_{\text{T}} = \cdots$ 単相負荷の電流 $I_{\text{S}} = \cdots$ 共用変圧器の容量 $S_{\text{C}} = (I_{\underline{\text{T}}} + I_{\underline{\text{S}}})V = \cdots$ $= 50 \text{ [kV · A]}$ 専用変圧器の容量 $S_{\text{D}} = I_{\underline{\text{T}}} \times V = \cdots$

p.201 左上図中の 端子間電圧	Aン状態 R 磁束の減少	Id オン状態 R 磁束の減少
p.207 上から1行目	過度応答を示す式を…	過 <u>渡</u> 応答を示す式を…
p.212 上から 4行目	<u>出力装置</u> の 5 大要素からなる	記憶装置の5大要素からなる.…
p.216 真理値表の 5 ~6 行目	$\begin{array}{ c c c c c c }\hline 1 & 1 & 0 & \underline{1} \\\hline 0 & 0 & 1 & \underline{0} \\\hline \end{array} \qquad \underline{A \cdot B \cdot \overline{C}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
p.261 下から 11 行 目	…ので, <u>(3)</u> 案を選択する.	…ので, <u>(4)</u> 案を選択する.
p.262 上から 13~ 14 行目	…, $18{\sim}24$ 時でそれぞれ $P_{\rm AM}{=}\underline{600}$ $[{ m kW}]$, $P_{\rm BM}{=}\underline{100}$ $[{ m kW}]$ となるので,…	…, 18~24 時でそれぞれ $P_{\rm AM} = \underline{100}$ [kW], $P_{\rm BM} = \underline{600}$ [kW] となるので, …

●平成 30 年 10 月 19 日第 1 版第 3 刷

頁·該当箇所	誤	正
p.91 上から8行目	増幅度の計算 入力インピーダンスが <u>零</u> ,増幅 度が無限大という	増幅度の計算 入力インピーダンスが <u>無限大</u> , 増幅度が無限大という
p.111 図	$ \frac{\dot{V}_{r}}{\sqrt{3}} \bigoplus_{r\dot{l}} jx\dot{l} $ $ \frac{\dot{V}_{s}}{\sqrt{3}} \bigoplus_{r\dot{l}} jx\dot{l} $	$\frac{\dot{V}_{r}}{\sqrt{3}} \bigoplus r\dot{I}$ $\frac{\dot{V}_{s}}{\sqrt{3}} \bigoplus$
p.122 右下図 (短絡 字) 中の数値	<u>5</u> %	100%
p.148 図中の文字 式	$ar{ar{\jmath}}\dot{ar{z}}_{\mathrm{s}}\dot{m{I}}_{\mathrm{n}}$	$\dot{z}_{ m s}\dot{I}_{ m n}$
p.155 表中の式	力率角 θ あり $P = 3V_{\underline{p}}I\cos(\theta - \delta)$ $P = \sqrt{3}V_{\underline{l}}I\cos(\theta - \delta)$	力率角 θ あり $P = 3E_{p}I\cos(\theta - \delta)$ $P = \sqrt{3}E_{l}I\cos(\theta - \delta)$
p.204 下から 6~7 行目	② <mark>昇圧チョッパ</mark> チョッパ部 Q が <u>オフ</u> のときにリアクトルにエネルギーが蓄積され, <u>オン</u> のときに放出されるので,	② <mark>昇圧チョッパ</mark> チョッパ部 Q が <u>オン</u> のときにリアクトルにエネルギーが蓄積され, <u>オフ</u> のときに放出されるので、
p.215 上から3行目	加法:1+A= <u>A</u> ,0+A=A	加法:1+A= <u>1</u> ,0+A=A

2021年2月15日, オーム社