『等価回路でしっかり理解! 詳解 電子回路』正誤表

(第1版第1刷用:2022年1月5日)

頁	箇所	誤	正
4	2 行目	大文字 K が熱力学温度の単位であるケルビンの記	これは、国際単位系の接頭辞が既定される前から
		号になっているからです.	小文字が使われていたことと, 大文字 K が熱力学
			温度の単位であるケルビンの記号になっているか
			らです.
6	式(1.1)	$V = V_m e^{j\omega t} = V_m \cos(\omega t + \phi) + j\sin(\omega t + \phi)$	$V = V_m e^{j(\omega t + \phi)} = V_m \cos(\omega t + \phi) + j\sin(\omega t + \phi)$
71	コラム 6.2	$df(0) = 1 d^2 f(0)$	(4) (40) (40) (4)
	6 行目	$f(\Delta x) = f(0) + \frac{df(0)}{dx} \Delta x + \frac{1}{2!} \frac{d^2 f(0)}{dx^2} \Delta x^2$	$f(\Delta x) = f(0) + f'(0)\Delta x + \frac{1}{2!}f''(0)\Delta x^2$
		$+\frac{1}{3!}\frac{d^3f(0)}{dx^3}\Delta x^3$	$+\frac{1}{3!}f^{\prime\prime\prime}(0)\Delta x^3$
		$+\frac{1}{4!}\frac{d^4f(0)}{dx^4}\Delta x^4\cdots$	$+\frac{1}{4!}f^{(4)}(0)\Delta x^4\cdots$
74	コラム 6.3	$C_n \subset C_n \subset C_n \subset C_n$	$I_C' = \frac{C_n}{W_P - \Delta W_P} \approx \frac{C_n}{W_P} - \frac{C_n}{W_P^2} (-\Delta W_B)$
	式(C8.1)	$I_C' = \frac{C_n}{W_B - \Delta W_B} \approx \frac{C_n}{W_B} - \frac{1}{W_B^2} (-\Delta W_B)$	$I_C = \frac{1}{W_B - \Delta W_B} \approx \frac{1}{W_B} - \frac{1}{W_B^2} (-\Delta W_B)$
		$=\frac{C_n}{W_B}\left(1+\frac{\Delta W_B}{W_B}\right)$	$=\frac{C_n}{W_B}\left(1+\frac{\Delta W_B}{W_B}\right)$
		$=I_{C}\left(1+\frac{\Delta W_{B}}{W_{B}}\right)$	$=I_{C}\left(1+\frac{\Delta W_{B}}{W_{B}}\right)$
82	6-7 行目	$V_A = 100$ V とすれば、熱抵抗 U_T を 26	$V_A=100$ V, $\alpha=0.9$ とすれば、熱抵抗 U_T を
		$\text{mV}(室温) とするとr_{\text{C}} = 20 \text{ k}\Omega、r_{\text{E}} = 5.2 \Omegaと$	$26 \text{ mV}(室温) とすると (1-\alpha)r_c = 20 \text{ k}\Omega,$
		なり、 $r_C \gg r_E$ であると	$r_E = 5.2$ Ωとなり, $\left(1 - \alpha\right) r_C \gg r_E$ であると
138	下から5行	したがって、ドレイン接地増幅回路の	したがって、ゲート接地増幅回路の
	目		
155	図 9.13(a)	С	C ₁
159	図 C9.3(a)	0 の位置が右下	0 の位置が左上
208	11 行目	となり、これと式(12.19)より、次の関係が導けま	となり、これと式(12.17)より、次の関係が導けま
		す.	す.
249	下から 2, 3 行目	$I_{1a} = \frac{14}{8 + \frac{4 \times 2}{4 + 2}} = \frac{14}{8 + \frac{4}{3}} = \frac{42}{28} = \frac{3}{2} \text{ V/k}\Omega$	$I_{1a} = \frac{-14}{8 + \frac{4 \times 2}{4 + 2}} = \frac{-14}{8 + \frac{4}{3}} = \frac{-42}{28} = -\frac{3}{2} \text{ V/k}\Omega$
		よって、 $I_{1a} = 1.5$ mA.	よって、 $I_{1a} = -1.5$ mA.