『等価回路でしっかり理解! 詳解 電子回路』正誤表

(第1版第1刷用:2022年8月8日更新)

頁	箇所	誤	正
4	2 行目	大文字 K が熱力学温度の単位であるケルビ	これは、国際単位系の接頭辞が既定される前
		ンの記号になっているからです.	から小文字が使われていたのと, 大文字 K
			が熱力学温度の単位であるケルビンの記号に
			なっているからです.
6	式(1.1)	$V = V_m e^{j\omega t} = V_m \cos(\omega t + \phi) + j \sin(\omega t + \phi)$	$V = V_m e^{j(\omega t + \phi)} = V_m \cos(\omega t + \phi) + j\sin(\omega t)$
			+ φ)
71	コラム 6.2 6 行目	$f(\Delta x) = f(0) + \frac{df(0)}{dx} \Delta x + \frac{1}{2!} \frac{d^2 f(0)}{dx^2} \Delta x^2$	$f(\Delta x) = f(0) + f'(0)\Delta x + \frac{1}{2!}f''(0)\Delta x^2$
		$+\frac{1}{3!}\frac{d^3f(0)}{dx^3}\Delta x^3$	$+\frac{1}{3!}f^{\prime\prime\prime}(0)\Delta x^3$
		$+\frac{1}{4!}\frac{d^4f(0)}{dx^4}\Delta x^4\cdots$	$+\frac{1}{4!}f^{(4)}(0)\Delta x^4 \cdots$
72	コラム 6.2 テイラー展	$f(x, y, z) \approx f(0,0,0) + \frac{\partial f(0,0,0)}{\partial x} x$	$f(\Delta x, \Delta y, \Delta z) \approx f(0,0,0) + \frac{\partial f(x, y, z)}{\partial x} \bigg _{x=y=z=0} \Delta x$
	開	$+\frac{\partial f(0,0,0)}{\partial y}y + \frac{\partial f(0,0,0)}{\partial z}z$	$+ \frac{\partial f(x, y, z)}{\partial y} \bigg _{x=y=z=0} \Delta y$
			$+ \frac{\partial f(x,y,z)}{\partial z} \bigg _{x=y=z=0} \Delta z$
74	コラム 6.3 式(C8.1)	$I_C' = \frac{C_n}{W_B - \Delta W_B} \approx \frac{C_n}{W_B} - \frac{1}{W_B^2} (-\Delta W_B)$	$I_C' = \frac{C_n}{W_B - \Delta W_B} \approx \frac{C_n}{W_B} - \frac{C_n}{W_B^2} (-\Delta W_B)$
		$=\frac{C_n}{W_B}\left(1+\frac{\Delta W_B}{W_B}\right)$	$=\frac{C_n}{W_B}\left(1+\frac{\Delta W_B}{W_B}\right)$
		$=I_{C}\left(1+\frac{\Delta W_{B}}{W_{B}}\right)$	$=I_{C}\left(1+\frac{\Delta W_{B}}{W_{B}}\right)$
82	6-7 行目	V_A =100 V とすれば,熱抵抗 U_T を 26 mV(室	V_A =100 V, α =0.9 とすれば、熱抵抗 U_T を 26
		温)とすると、 $r_C=20$ $k\Omega$ 、 $r_E=5.2$ Ω とな	$mV(室温)とすると, (1-\alpha)r_C = 20 k\Omega,$
		り, r _C >>r _E であると	r_E =5.2 Ω となり, $(1-\alpha)r_C>>r_E$ であると
111	下から	これらを考慮し、コレクタ電圧 Vco が電源電	今回は、上記のようにエミッタ電圧 V_{E0} が
	2 行目	圧の半分の 2.5 V 程度であることから,エミ	200 mV であり、コレクタ電圧 V_{CO} が電源電
		ッタ電圧 V _{E0} を 1 V 程度とします.	圧の半分の 2.5 V 程度であることから, コ
			レクタ・エミッタ間電圧 V_{CE0} は、 2 V 以上
105		1 上 1 一 (確保できます.
135		したがって,通常は負荷抵抗 R は高くは 設定しません.	(削除)
138	下から	したがって、ドレイン接地増幅回路の	したがって、ゲート接地増幅回路の
100	5 行目		
141		アーリー電圧 V_A のような指標になり、飽	アーリー電圧 V_A のような指標になり、 $($ チ
		和領域でのドレイン抵抗を表します.	ャネル長変調係数×飽和電流値)の逆数
	l .	<u>L</u>	1

頁	箇所	誤	正
			は、飽和領域でのドレイン抵抗を表しま
			す.
155	5 行目	(零点の存在)	(高域側における零点の存在)
155	図 9.13(a)	С	<i>C</i> ₁
156	式(9.35)	$\frac{v_{B'E}}{v_{in}} = \frac{R_{12}r_E'}{(R_{12} + r_E')\left(\rho + \frac{1}{i\omega C_*}\right) + R_{12}r_E'}$	$\frac{v_{B'E}}{v_{in}} = \frac{R_{12}r_E'}{(R_{12} + r_E')\left(\rho + \frac{1}{i\omega C_*}\right) + R_{12}r_E'}$
		() 3001/	$(R_{12} + r_E^2) \left(\rho + \frac{1}{j\omega C_1}\right) + R_{12}r_E^2$
		$= \frac{1}{\frac{R_{12} + r_E'}{R_{12}r_E'} \left(\rho + \frac{1}{j\omega C_2}\right) + 1}$	$= \frac{1}{\frac{R_{12} + r_E'}{R_{12}r_E'} \left(\rho + \frac{1}{j\omega C_1}\right) + 1}$
156	式(9.36)	$\left \frac{R_{12} + r_E'}{R_{12} r_E'} \left(\rho + \frac{1}{j\omega C_2} \right) + 1 \right = \sqrt{2}$	$\left \frac{R_{12} + r_E'}{R_{12} r_E'} \left(\rho + \frac{1}{j\omega C_1} \right) + 1 \right = \sqrt{2}$
159	図 C9.3(a)	0 の位置が右下	0 の位置が左上
166	図 10.4(b)	$g_m v_{GS4}$	$g_{m4}v_{GS4}$
169	式(10.19)	$I_1 = \frac{I_B}{2} + \frac{\Delta I_D}{2}$	$I_1 \approx \frac{I_B}{2} + \frac{\Delta I_D}{2}$
169	式(10.20)	$I_2 = \frac{I_B}{2} - \frac{\Delta I_D}{2}$	$I_2 \approx \frac{I_B}{2} - \frac{\Delta I_D}{2}$
173	1行目	$\frac{1}{R_L//r_D} = \frac{1}{R_L} + \frac{1}{r_D}$	$\frac{1}{R_D//r_D} = \frac{1}{R_D} + \frac{1}{r_D}$
177	下から	各トランジスタのチャネル長変調係数を,	各トランジスタの $\frac{\Delta I_D}{\Lambda V_{PS}}$ を、 λ_n 、 λ_p としてい
	1 行目	λ_n , λ_p としています.	$\frac{1}{\Delta V_{DS}} (z_1, \lambda_n, \lambda_p) = \frac{1}{2} (z_1, z_2, \lambda_n, \lambda_p) = \frac{1}{2} (z_1, z_2, \lambda_n, \lambda_p) = \frac{1}{2} (z_1, z_2, \lambda_p) = \frac{1}{2} (z_1, \lambda_p) = \frac{1}{2} (z_1$
			ます.
178	14 行目	傾きを表しているといいました. つまり,	傾きに関係しているといいました. つま
		その逆数(1/λ)は MOSFET のドレイン	り,上記の λ_p や λ_n の逆数は,MOSFET の
		抵抗を表します.	ドレイン抵抗を表します.
186	図 11.4	オペアンプの入力において,上側が+で下 側が-	オペアンプの入力において,上側が-で下 側が+
187	式(11.18)	$V_{out} = -\left(\frac{R_F}{R_1}V_{in1} + \frac{R_F}{R_1}V_{in2}\right)$	$V_{out} = -\left(\frac{R_F}{R_1}V_{in1} + \frac{R_F}{R_2}V_{in2}\right)$
193	式(11.38)	抵抗は kΩ, 容量は pF, トランスコンダ	抵抗は数十~数百 kΩ,容量は数 pF,ト
	の下	クタンスは mS オーダーと考えると,	ランスコンダクタンスは数〜数十 mS と考
			えると,
204	3 行目	一方,どのような負帰還回路でも遅延時間	一方、第9章などで示したように、ポール
		t_d は存在するので、周波数を上げていく	が複数あるオペアンプにおいて、周波数を
		٤,	上げていくと,
208	11 行目	となり、これと式(12.19)より、以下の関係	となり、これと式(12.17)より、以下の関係
		が導けます.	が導けます.
248	下から 2,3行目	$I_{1a} = \frac{14}{8 + \frac{4 \times 2}{4 + 2}} = \frac{14}{8 + \frac{4}{3}} = \frac{42}{28} = \frac{3}{2} \text{ V/k}\Omega$	$I_{1a} = \frac{-14}{8 + \frac{4 \times 2}{4 + 2}} = \frac{-14}{8 + \frac{4}{3}} = \frac{-42}{28} = -\frac{3}{2} \text{ V/k}\Omega$
		よって、 $I_{1a} = 1.5 \text{ mA}$	よって、 $I_{1a} = -1.5$ mA

頁	箇所	誤	正
249	5 行目	$I_1 = I_{1a} + I_{1b} = 1.5 + 0.5 = 2 \text{ mA}$	$I_1 = I_{1a} + I_{1b} = -1.5 + 0.5 = -1 \text{ mA}$
254	4 行目	これより、 $R_1 = \frac{V_{CC} - V_B}{\frac{V_B}{R_2} + I_{B0}} = 9.9 \mathrm{k}\Omega$ となる。 $R_1 = 10 \mathrm{k}\Omega$ として、 $R_1//R_2 = 1.7 \mathrm{k}\Omega$ となり、 S_β は、 0.32 くらいとなる。このと	これは、電源電圧 10 V の $10 \text{ 分の } 1$ 程度のため、 R_1 は、 R_2 の 10 倍程度と思われるので、 R_2 は、 $R_{in} (=R_1//R_2)$ の 1.1 倍程度だと考えられる。したがって、公称抵抗値を考慮して R_2
		きの $I_{R\!\!2}$ は,812 mV/2 k Ω =406 μ A となり, $I_{B\!\!0}$ の 10 倍くらいとなる.	$=1.8\mathrm{k}\Omega$ とする. これより、 $R_1=rac{v_{CC}-v_B}{v_B^2+I_{B0}}=20.4\mathrm{k}\Omega$ となる. $R_1=20\mathrm{k}\Omega$ として、 $R_1//R_2=1.65\mathrm{k}\Omega$ となり、 S_β は、 0.33 くらいとなる。このときの I_{R2} は、 $812\mathrm{mV}/1.8\mathrm{k}\Omega$ = 450μ A となり、 I_{B0} の 25 倍くらいとなる。.