■正誤表

「5 力年収録 電験二種一次試験完全解答—第 2 集—」

頁・該当箇所	誤	正
p. 48 図 2-2 ⑤	タップ 選択器 限流 抵抗 切換 開閉器	タップ 選択器 限流 抵抗 切換 開閉器
p. 226 下から 8 行目	このとき、陽極は酸化反応なのでアノード、陰極は還元反応なのでカソードである.	このとき、 <u>陰</u> 極は酸化反応なのでアノード、 <u>陽</u> 極は還元反応なのでカソードである.
p. 250 下から1行目	$=\frac{be^1}{a}$	$e^1 = \frac{b}{a}$
p. 254上から6行目,8 行目, 11 行	$\dot{I}_{V} = \dot{I}_{U} \varepsilon^{-j\frac{2}{3}\pi} = \dot{I}_{U} \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right)$	$\dot{I}_{V} = \dot{I}_{U} \varepsilon^{-j\frac{2}{3}\pi} = \dot{I}_{U} \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right)$
目の式	$\dot{I}_W = \dot{I}_U \varepsilon^{-j\frac{4}{3}\pi} = \dot{I}_U \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right)$	$\dot{I}_{W} = \dot{I}_{U} \varepsilon^{-j\frac{4}{3}\pi} = \dot{I}_{U} \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right)$
	$= \left(1 + \frac{1}{2}\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) + \frac{1}{2}\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right)\right)\dot{I}_{U} = \frac{1}{2}\dot{I}_{U}$	$= \left(1 + \frac{1}{2}\left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) + \frac{1}{2}\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)\right)\dot{I}_{U} = \frac{1}{2}\dot{I}_{U}$
p. 335	$\frac{E}{2^5}$	$\frac{E}{2^5}$
図 6-1 の右端	$ \begin{array}{c} 2^{3} \\ 2R \end{array} $ $ \downarrow \frac{E}{2^{5}R} $	R $\downarrow \frac{E}{2^5R}$
	5段目	5 段目 2019 年 6 月 11 日 オーム社

2019年6月11日, オーム社