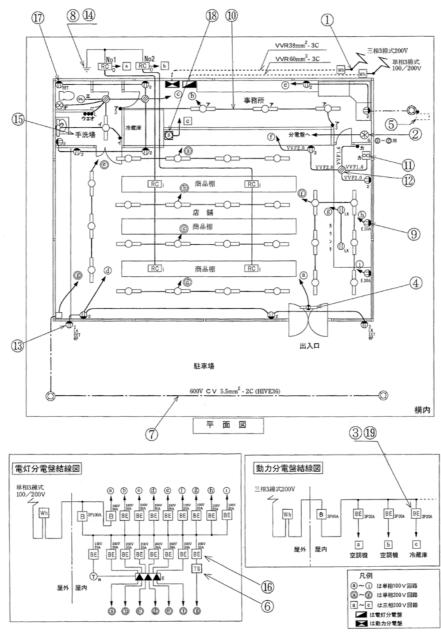
2018 第二種電気工事士試験予想模擬テスト

問題 1. 一般問題

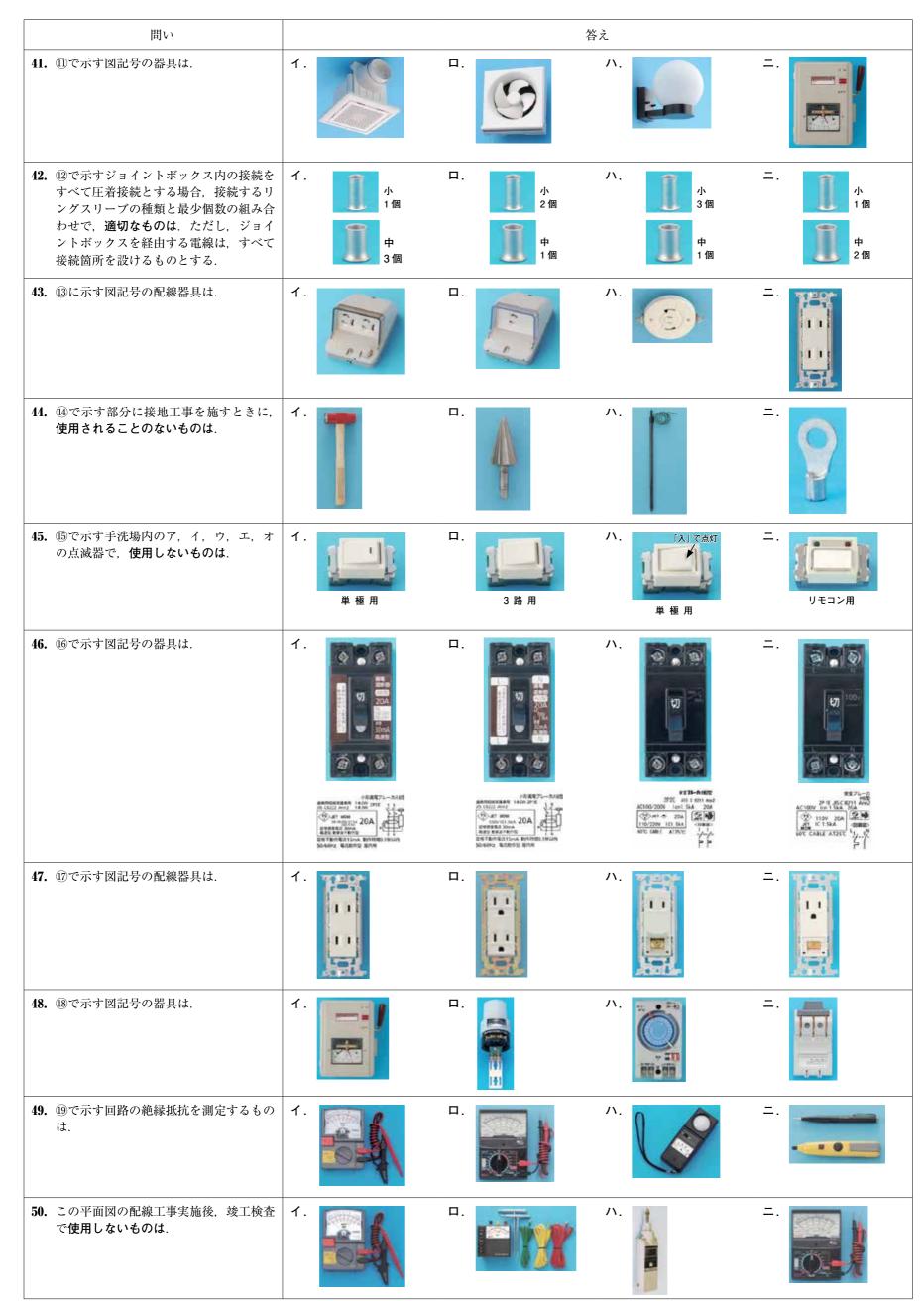
【注】本問題の計算で $\sqrt{2}$, $\sqrt{3}$ および円周率 π を使用する場合の数値は次によること. $\sqrt{2}=1.41$, $\sqrt{3}=1.73$, $\pi=3.14$

次の各問いには4通りの答え(イ.ロ.ハ.ニ.)が書いてある。それぞれの問いに対して答えを1つ選びなさい。

問い 1. 図の直流回路の電流計の値は何〔A〕か. 電流計の内部抵抗は無視する.		答え		
(0.0				
$\begin{array}{c c} \hline & 60\Omega \\ \hline & 10\Omega \\ \hline & 120V & 20\Omega \end{array}$	Π.	3 ^^	. 4	二 . 5
2. 直径 1.6mm, 長さ 10m の軟銅線と電気抵抗が等しくなる断面積 5.5mm² の軟銅線 イ. 25 の長さ〔m〕はおおよそいくらか.	Π.	28 /\	. 31	= . 34
3. 抵抗 4Ωと誘導リアクタンス 3Ωのコイル (コイルの抵抗は無視)を直列に接続し、交流電圧を加えたとき 10A が流れている。この抵抗とコイルを並列に切り替えたとき消費電力 [W] はいくらになるか。	□.	525 A	. 625	=. 700
4. 図の三相交流回路で×印で断線したとき 電流 <i>I</i> [A] はいくらになるか.				
$ \begin{array}{c c} & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\$	□.	6 1	. 8	=. 10
5. 図のような単相 3 線式回路の ac 間の電圧 〔V〕を求めなさい.				
1φ3w 電源 200V 0.1Ω 負債 5A 100V 0.1Ω 負債 5A	□.	196 A	. 197	= . 198
6. 図の三相 3 線式回路の送電端 S の線間電 圧〔V〕はおおよそいくらか.				
S。 0.1Ω 三相 (負荷 力率80%	Π.	204 ^^	. 206	二 . 209
7. 図のような電熱器 ① 2 台と電動機 ⑩ 2 台が接続された単相 2 線式の低圧屋内幹線がある. 幹線の過電流遮断器の電流容量 [A] と幹線の太さを決める電流 [A] を求めなさい. 需要率を 100%とする.				
サ			$I_B:95 \ I_W:52$	$I_{B}: 100$ $I_{W}: 48$
				© + _ 1, ½+ 2019


問い	答え					
8. 低圧屋内配線の分岐回路の設計で、配線 用遮断器、分岐回路の電線の太さ及びコ ンセントの組み合わせとして、 不適切な ものは、	イ. □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
9. 金属管による低圧屋内配線工事で,管内 に直径 2.0mm の 600V 絶縁電線(軟銅線) 4 本を収めて施設した場合,電線 1 本あ たりの許容電流 [A] はいくらか. ただし, 電流減少係数は 0.63, 周囲温度は 30℃以 下とする.	イ. 17 ロ. 19 ハ. 22 ニ. 25					
10. 一般用低圧三相かご形誘導電動機に関する記述で、誤っているものは.	 イ.電力用コンデンサを並列に接続する目的は、電動機の振動を防ぐためである。 ロ.じか入れ(全電圧)での始動電流は全負荷電流の4~8倍程度である。 ハ.電源の周波数が50Hzから60Hzに変わると回転速度がほぼ20%増加する。 ニ.3本の結線のうち、いずれか2本入れ替えると、電動機は逆回転する。 					
11. 低圧電路に使用する定格電流 20A の配線用遮断器に 40A の電流が継続して流れたとき,この配線用遮断器が自動的に動作しなければならない時間(分)の限度(最大の時間)は.	イ. 1 ロ. 2 ハ. 4 ニ. 60					
12. 1灯の電灯を3箇所のいずれの場所から も点滅できるようにするためのスイッチ の組合せとして、 正しいものは .	 イ. 3路スイッチ 3個 ロ. 単極スイッチ 1 個と 3路スイッチ 2 個 ハ. 3路スイッチ 2 個と 4路スイッチ 1 個 ニ. 3路スイッチ 1 個と 4路スイッチ 2 個 					
13. 電気工事の作業とその作業で使用する工具の組合せとして、誤っているものは.	イ. 金属製キャビネットに穴を開ける作業とノックアウトパンチャ ロ. 薄鋼電線管を切断する作業とボルトクリッパ ハ. 木造天井板に電線管を通す穴を開ける作業と羽根ぎり ニ. 硬質塩化ビニル電線管の管端部の内側と外側の面取りの作業と面取器					
14. アウトレットボックス(金属製)の使用目的として, 不適切なものは .	イ. 金属管工事で電線の引き入れを容易にするのに用いる。ロ. 配線用遮断器を集合して設置するのに用いる。ハ. 金属管工事で電線相互を接続する部分に用いる。ニ. 照明器具などを取り付ける部分で電線を引き出す場合に用いる。					
15. 低圧の地中電線路を直接埋設式により施設する場合に、使用できる電線は.	 イ.屋外用ビニル絶縁電線 (OW) ロ. 600V 架橋ポリエチレン絶縁ビニルシースケーブル (CV) ハ. 引込用ビニル絶縁電線 (DV) ニ. 600V ビニル絶縁電線 (IV) 					
16. 写真に示す材料の用途は. 導体 (鋼等) 硬質塩化ビニル	イ.床下等湿気の多い場所の配線材料として用いる。ロ.店舗などで照明器具等を任意の位置で使用する場合に用いる。ハ.フロアダクトと分電盤の接続材料に用いる。ニ.容量の大きな幹線用配線用材料として用いる。					
17. 写真に示す材料の用途は.	 イ. ねじなし電線管相互を接続するのに用いる. ロ. 薄鋼電線管相互を接続するのに用いる. ハ. 厚鋼電線管相互を接続するのに用いる. ニ. ねじなし電線管と金属製アウトレットボックスを接続するのに用いる. 					
18. 写真に示す工具の用途は.	イ. 各種金属板の穴あけに使用する. ロ. 金属管にねじを切るのに用いる. ハ. 硬質塩化ビニル電線管の管端部の面取りに使用する. ニ. 木材の穴あけに用いる.					

	問v,	答え					
19.	使用電圧 100V の屋内配線で、湿気の多い場所における工事の種類として、 不適切なものは .	イ. 点検できない隠ぺい場所で、防湿装置を施した金属管工事 ロ. 点検できない隠ぺい場所で、防湿装置を施した合成樹脂管工事(CD 管を除く) ハ. 展開した場所で、ケーブル工事 ニ. 展開した場所で、金属線び工事					
20.	低圧屋内配線工事で、600V ビニル絶縁 ビニルシースケーブルを用いたケーブル 工事の施工方法として、 適切なものは .	イ.接触防護措置を施した場所で、造営材の側面に沿って垂直に取り付け、その支持点間の距離を 6m とした. ロ. 丸形ケーブルを、屈曲部の内側の半径をケーブル外径の 3 倍にして曲げた. ハ. 建物のコンクリート壁の中に直接埋設した. (臨時配線工事の場合を除く.) ニ. 金属製遮へい層のない電話用弱電流電線と共に同一の合成樹脂管に収めた.					
21.	機械器具の金属製外箱に施す D 種接地工事に関する記述で, 不適切なものは .	 イ. 三相 200V 電動機外箱の接地線に直径 1.6mm のIV電線(軟銅線)を使用した. ロ. 単相 100V 移動式の電気ドリルの接地線として多心コードの断面積 0.75mm² の 1 心を使用した. ハ. 一次側 200V, 二次側 100V, 3kV·A の絶縁変圧器(二次側非接地)の二次側電路に電動丸のこぎりを接続し、接地を施さないで使用した. 二. 単相 100 Vの電動機を水気のある場所に設置し、定格感度電流 30mA, 動作時間 0.1 秒の電流動作型漏電遮断器を取り付けたので、接地工事を省略した. 					
22.	木造住宅の金属板張りの外壁(金属系サイディング)を貫通する部分の低圧屋内配線工事として、 適切なものは . ただし、金属管工事、金属可とう電線管工事に使用する電線は、600V ビニル絶縁電線とする.	 イ.金属管工事とし、金属板張りの外壁と電気的に完全に接続された金属管に D 種接地工事を施し貫通施工した. ロ.金属管工事とし、壁に小径の穴を開け、金属板張りの外壁と金属管とを接触させ金属管を貫通施工した. ハ.ケーブル工事とし、貫通部分の金属板張りの外壁を十分に切り開き、600V ビニル絶縁ビニルシースケーブルを合成樹脂管に収めて電気的に絶縁し貫通施工した. ニ.金属可とう電線管工事とし、貫通部分の金属板張りの外壁を十分に切り開き、金属製可とう電線管を壁と電気的に接続し貫通施工した. 					
23.	使用電圧 200V の三相電動機回路の施工 方法で, 不適切なものは .	イ. 金属管工事に屋外用ビニル絶縁電線を使用した. ロ. 造営材に沿って取り付けた 600V ビニル絶縁ビニルシースケーブルの支持点間の距離を 2m 以下とした. ハ. 乾燥した場所の金属管工事で、管の長さが 3m なので金属管の D 種接地工事を省略した. ニ. 2 種金属製可とう電線管を用いた工事に 600V ビニル絶縁電線を使用した.					
24.	電気計器の目盛板に図のような記号があった. 記号の意味として, 正しいものは.	イ. 誘導形で目盛板を水平において使用する.ロ. 整流形で目盛板を鉛直に立てて使用する.ハ. 可動鉄片形で目盛板を鉛直に立てて使用する.ニ. 可動鉄片形で目盛板を水平において使用する.					
25.	低圧電路で使用する測定器とその用途の 組合せとして、 正しいものは .	イ. 検電器 と 電路の充電の有無の確認 ロ. 検相器 と 電動機の回転速度の測定 ハ. 回路計 と 絶縁抵抗の測定 ニ. 回転計 と 三相回路の相順(相回転)の確認					
26.	分岐開閉器を開放して負荷を電源から完全に分離し、その負荷側の低圧屋内電路と大地間の絶縁抵抗を一括測定する方法として、 適切なものは .	イ. 負荷側の点滅器をすべて「切」にして、常時配線に接続されている負荷は、使用状態にしたままで測定する. ロ. 負荷側の点滅器をすべて「入」にして、常時配線に接続されている負荷は、使用状態にしたままで測定する. ハ. 負荷側の点滅器をすべて「切」にして、常時配線に接続されている負荷は、すべて取り外して測定する. ニ. 負荷側の点滅器をすべて「入」にして、常時配線に接続されている負荷は、すべて取り外して測定する.					
27.	三相 200V 三相誘導電動機の鉄台に施設した接地工事の接地抵抗値を測定し、接地線(軟銅線)の太さを検査した。接地抵抗値[Ω]と接地線の太さ(直径[mm])の組合せで、適切なものは、ただし、電路に施設された漏電遮断器の動作時間は、0.1 秒とする。						
28.	「電気設備に関する技術基準を定める省令」における電圧の低圧の区分は.	イ. 直流 600V 以下, 交流 750V 以下 ロ. 直流 750V 以下, 交流 600V 以下 ハ. 直流 600V 以下, 交流 600V 以下 ニ. 直流 750V 以下, 交流 300V 以下					
29.	電気工事士法において,一般用電気工作物の作業で,電気工事士でなければ 従事できない 作業は.	イ. インターホーンの施設に使用する小型変圧器(二次電圧 36V 以下)の二次側配線工事の作業 ロ. 電線を支持する柱, 腕木を設置する作業 ハ. 電線管をねじ切りし, 電線管とボックスを接続する作業 ニ. 電力量計の取り付け作業					
30.	電気用品安全法により特定電気用品の適用を受けるものは.	 イ. 消費電力 40W の蛍光ランプ ロ. 外径 25mm の金属製電線管 ハ. 定格電流 60A の配線用遮断器 ニ. 消費電力 30W の換気扇 ⑥ オーム社 2018					


問題2. 配線図

図は、鉄骨軽量コンクリート造店舗平屋建の配線図である。この図に関する次の各問いには4通りの答え(イ,ロ,ハ,ニ)が書いてある。それぞれの問いに対して、答えを1つ選びなさい。

- 〔注意〕 1. 屋内配縮で表示がない部分は、600V ビニル絶縁ビニルシースケーブル平形 (VVF) を用いたケーブル工事である.
 - 2. 屋内配線等の電線の本数及び太さ、その他問いに直接関係のない部分等は省略又は簡略化してある.
 - 3. 漏電遮断器は、全て定格感度電流 30 [mA]、漏電引外し動作時間が 0.5 秒以内のものを使用している.
 - 4. 選択肢(答え)の写真にあるコンセント及び点滅器は、「一般形(JIS C 0303: 2000 構内電気設備の配線用図記号)」を使用している.

問い	答え			
31. ①部分の引込線取付点の地表上の高さの 最低値[m]は、ただし、技術上やむを得な い場合で、交通に支障がない場合とする.	1. 2.5	□. 3.0	N. 3.5	=. 4.0
32. ②で示す図記号の器具の名称は.	イ. 火災表示灯	ロ. リモコンセレクタ スイッチ	ハ.表示スイッチ	二. 漏電警報器
33. ③の部分の図記号の器具の名称は.	イ. 配線用遮断器	ロ. モータブレーカ	ハ.漏電警報器	二. 漏電遮断器 (過負荷保護付)
34. ④で示す図記号の器具の名称は.	イ. 誘導灯	口. 保安用照明	ハ. 一般用照明	二. 非常用照明
35. ⑤で示す部分は屋外灯の自動点滅器である. 図記号の傍記表示として, 正しいものは.	1. A (3A)	□. L (3A)	л. т (3А)	=. P (3A)
36. ⑥で示す図記号の器具の名称は.	イ . タンブラスイッチ	口. 小形変圧器	ハ. タイムスイッチ	二. 遅延スイッチ
37. ⑦で示す部分の配線工事で用いる管 (HIVE 36) の種類は.	イ. 耐衝撃性硬質塩化 ビニル管	ロ. 硬質塩化ビニル電線 管	ハ.硬質塩化ビニル管	ニ. 耐衝撃性硬質塩化 ビニル電線管
38. ⑧の部分に施す接地線(軟銅線)の最小 太さと接地抵抗の最大値との組み合わせ で、適切なものは、	1. 1.6mm 100 Ω	□ . 1.6mm 500 Ω	100 Ω	=. 2.0mm 500 Ω
39. ⑨の部分に使用するコンセントの極配置 (刃受け) は.	1.		n. (1)	=.
40. ⑩の部分の最少電線本数(心線数)は.	1.3	П. 4	N. 5	=. 6

