本文へスキップします。

【参】モーダルJS:読み込み
書籍DB:詳細

機械学習と深層学習 Pythonによるシミュレーション

『機械学習と深層学習 C言語によるシミュレーション』のPython版登場!!

 本書は人工知能研究における機械学習の諸分野をわかりやすく解説し、それらの知識を前提として深層学習とは何かを示します。具体的な処理手続きやプログラム例(Python)を適宜示すことで、これらの技術がどのようなものなのかを具体的に理解できるように紹介していきます。
まえがき
第1章 機械学習とは
1.1 機械学習とは
1.1.1 深層学習の成果
1.1.2 学習と機械学習・深層学習
1.1.3 機械学習の分類
1.1.4 深層学習に至る機械学習の歴史
1.2 本書例題プログラムの実行環境について
1.2.1 プログラム実行までの流れ
1.2.2 プログラム実行の実際
第2章 機械学習の基礎
2.1 帰納学習.
2.1.1 演繹的学習と帰納的学習
2.1.2 帰納的学習の例題 ―株価の予想―
2.1.3 帰納学習による株価予想プログラム
2.2 強化学習
2.2.1 強化学習とは
2.2.2 Q学習 強化学習の具体的方法
2.2.3 強化学習の例題設定 迷路抜け知識の学習
2.2.4 強化学習のプログラムによる実現
第3章 群知能と進化的手法
3.1 群知能
3.1.1 粒子群最適化法
3.1.2 蟻コロニー最適化法
3.1.3 蟻コロニー最適化法の実際
3.2 進化的手法
3.2.1 進化的手法とは
3.2.2 遺伝的アルゴリズムによる知識獲得
第4章 ニューラルネット
4.1 ニューラルネットワークの基礎
4.1.1 人工ニューロンのモデル
4.1.2 ニューラルネットと学習
4.1.3 ニューラルネットの種類
4.1.4 人工ニューロンの計算方法
4.1.5 ニューラルネットの計算方法
4.2 .バックプロパゲーションによるニューラルネットの学習
4.2.1 パーセプトロンの学習手続き
4.2.2 バックプロパゲーションの処理手続き
4.2.3 バックプロパゲーションの実際
第5章 深層学習
5.1 深層学習とは
5.1.1 従来のニューラルネットの限界と深層学習のアイデア
5.1.2 畳み込みニューラルネット
5.1.3 自己符号化器を用いる学習手法
5.2 深層学習の実際
5.2.1 畳み込み演算の実現
5.2.2 畳み込みニューラルネットの実現
5.2.3 自己符号化器の実現
付 録
A 荷物の重量と価値を生成するプログラム kpdatagen.py
B ナップサック問題を全数探索で解くプログラム direct.py
参考文献
索   引

ここでは、本書で取り上げたサンプルプログラムとデータファイルを、圧縮ファイル(zip形式)で提供しています。圧縮ファイル(22226-9.zip:約20KB)をダウンロードし、解凍(フォルダ付き)してご利用ください。

  • 本ファイルは、本書をお買い求めになった方のみご利用いただけます。本書をよくお読みのうえ、ご利用ください。また、本ファイルの著作権は、本書の著作者である、小高知宏氏に帰属します。
  • 本ファイルを利用したことによる直接あるいは間接的な損害に関して、著作者およびオーム社はいっさいの責任を負いかねます。利用は利用者個人の責任において行ってください。また、ソフトウェアの動作・実行環境、操作についての質問には一切お答えすることはできません。